The development of 5G technologies aimed at increasing data rate of wireless communication networks by a factor of 100 imposes stringent specifications (large bandwidth, high gain, small size and temperature independent performance) on the design of the radio frequency (RF) electronics. Various front-end antenna solutions relying on patch radiating structures have been proposed for millimeter-wave applications. Said antennas are characterized by small size, low weight, and low cost and can be easily integrated on chip.
However, because of losses in conductors as well as dielectric substrate materials, these antennas suffer from very low radiation efficiency (
DRAs rely on leaky dielectric resonators that can transform guided waves into volume waves (RF signals). In the past, these antennas have been mainly realized by making use of ceramic materials characterized by large permittivity and high quality (Q) factor (between 20 and 2000). Figure 1 shows examples of different radiating structures that can be used for dielectric resonator antennas.
Learn more about The Antenna Company